
HDL Coder™
Getting Started Guide

R2018b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

HDL Coder™ Getting Started Guide
© COPYRIGHT 2012–2018 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government's needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History
March 2012 Online only New for Version 3.0 (Release 2012a)
September 2012 Online only Revised for Version 3.1 (Release 2012b)
March 2013 Online only Revised for Version 3.2 (Release 2013a)
September 2013 Online only Revised for Version 3.3 (Release 2013b)
March 2014 Online only Revised for Version 3.4 (Release 2014a)
October 2014 Online only Revised for Version 3.5 (Release 2014b)
March 2015 Online only Revised for Version 3.6 (Release 2015a)
September 2015 Online only Revised for Version 3.7 (Release 2015b)
October 2015 Online only Rereleased for Version 3.6.1 (Release

2015aSP1)
March 2016 Online only Revised for Version 3.8 (Release 2016a)
September 2016 Online only Revised for Version 3.9 (Release 2016b)
March 2017 Online only Revised for Version 3.10 (Release 2017a)
September 2017 Online only Revised for Version 3.11 (Release 2017b)
March 2018 Online only Revised for Version 3.12 (Release 2018a)
September 2018 Online only Revised for Version 3.13 (Release 2018b)

About HDL Coder
1

HDL Coder Product Description . 1-2
Key Features . 1-2

Supported Third-Party Tools and Hardware 1-3
Third-Party Synthesis Tools and Version Support 1-3
FPGA-in-the-Loop Hardware . 1-3
Simulink Real-Time FPGA I/O: Speedgoat Target Hardware . . 1-4
Generic ASIC/FPGA Hardware . 1-4
IP Core Generation Hardware . 1-5
FPGA Turnkey Hardware . 1-6

VHDL and Verilog Language Support . 1-8

HDL Coder Supported Hardware . 1-9

Getting Started with HDL Coder
2

Tool Setup . 2-2
Synthesis Tool Path Setup . 2-2
HDL Simulator Setup . 2-3
Xilinx System Generator Setup for ModelSim Simulation 2-4
Altera DSP Builder Setup . 2-5
FPGA Simulation Library Setup . 2-5
C/C++ Compiler Setup . 2-6

v

Contents

Tutorials
3

HDL Code Generation and FPGA Synthesis from a MATLAB
Algorithm . 3-2

About the Algorithm in This Example 3-2
Create Local Copy of Design and Testbench Files 3-2
Set Up Synthesis Tool Path . 3-3
Test the Original MATLAB Algorithm 3-3
Set Up a Project Using HDL Coder App 3-4
Open the HDL Coder Workflow Advisor 3-6
Create Fixed-Point Versions of the Algorithm and Test

Bench . 3-7
Generate HDL Code . 3-9
Verify Generated HDL Code . 3-9
FPGA Synthesis and Implementation 3-9

Create HDL-Compatible Simulink Model 3-11
Open Model and HDL Coder Library 3-11
Develop Design and Test Bench . 3-12
Configure Model for HDL Compatibility 3-15
Check Subsystem for HDL Compatibility 3-16
Run Model Advisor Checks for HDL Coder 3-18
Generate HDL Code . 3-19

Generate HDL Code from Simulink Model 3-20
The sfir_fixed Model . 3-20
Generate HDL Code . 3-22
View HDL Code Generation Files . 3-24

HDL Code Generation and FPGA Synthesis Using the HDL
Workflow Advisor . 3-26

About HDL Workflow Advisor . 3-26
Set Up Tool Path . 3-27
Open the HDL Workflow Advisor . 3-27
Generate HDL Code . 3-28
Perform FPGA Synthesis and Analysis 3-30
Run Workflow at Command Line with a Script 3-31

Verify Generated Code from Simulink Model Using HDL Test
Bench . 3-33

How to Verify the Generated Code . 3-33
What is a HDL Test Bench? . 3-33

vi Contents

Generate HDL Test Bench . 3-34
View HDL Test Bench Files . 3-35
Run Simulation and Verify Generated HDL Code 3-36

vii

About HDL Coder

• “HDL Coder Product Description” on page 1-2
• “Supported Third-Party Tools and Hardware” on page 1-3
• “VHDL and Verilog Language Support” on page 1-8
• “HDL Coder Supported Hardware” on page 1-9

1

HDL Coder Product Description
Generate VHDL and Verilog code for FPGA and ASIC designs

HDL Coder generates portable, synthesizable VHDL® and Verilog® code from MATLAB®

functions, Simulink® models, and Stateflow® charts. The generated HDL code can be used
for FPGA programming or ASIC prototyping and design.

HDL Coder provides a workflow advisor that automates the programming of Xilinx®,
Microsemi®, and Intel® FPGAs. You can control HDL architecture and implementation,
highlight critical paths, and generate hardware resource utilization estimates. HDL Coder
provides traceability between your Simulink model and the generated Verilog and VHDL
code, enabling code verification for high-integrity applications adhering to DO-254 and
other standards.

Key Features
• Target-independent, synthesizable VHDL and Verilog code
• Code generation support for MATLAB functions, System objects and Simulink blocks
• Mealy and Moore finite-state machines and control logic implementations using
Stateflow

• Workflow advisor for programming Xilinx, Microsemi, and Intel application boards
• Resource sharing and retiming for area-speed tradeoffs
• Code-to-model and model-to-code traceability for DO-254
• Legacy code integration

1 About HDL Coder

1-2

Supported Third-Party Tools and Hardware

In this section...
“Third-Party Synthesis Tools and Version Support” on page 1-3
“FPGA-in-the-Loop Hardware” on page 1-3
“ Simulink Real-Time FPGA I/O: Speedgoat Target Hardware” on page 1-4
“Generic ASIC/FPGA Hardware” on page 1-4
“IP Core Generation Hardware” on page 1-5
“FPGA Turnkey Hardware” on page 1-6

Third-Party Synthesis Tools and Version Support
The HDL Workflow Advisor is tested with the following third-party FPGA synthesis tools:

• Intel Quartus Prime Standard Edition 17.1
• Xilinx Vivado® Design Suite 2017.4
• Microsemi Libero® SoC 11.8
• Xilinx ISE 14.7

To use third-party synthesis tools with HDL Coder, a supported synthesis tool must be
installed, and the synthesis tool executable must be on the system path. For details, see
“Tool Setup” on page 2-2.

FPGA-in-the-Loop Hardware
The FPGAs supported for FPGA-in-the-loop simulation with HDL Verifier™ are listed in
the HDL Verifier documentation.

You can also add custom FPGA boards using the FPGA Board Manager. See “FPGA Board
Customization” for details.

For FPGA-in-the-Loop or Customization for USRP® Device using the HDL Workflow
Advisor, a supported synthesis tool must be installed, and the synthesis tool executable
must be on the system path. For details, see “Tool Setup” on page 2-2.

 Supported Third-Party Tools and Hardware

1-3

Simulink Real-Time FPGA I/O: Speedgoat Target Hardware
Speedgoat
I/O Module

FPGA
Device

Synthesis Tool

IO342 Xilinx Kintex
UltraScale

For more information and to learn about the synthesis tool
requirements, see Xilinx HDL Support with Speedgoat IO
Modules.IO333-325K,

IO334, IO325
Xilinx
Kintex-7

IO332, IO397 Xilinx Artix-7
IO332, IO331,
IO331-6

Xilinx
Spartan-6

Generic ASIC/FPGA Hardware
The following hardware is supported for the Generic ASIC/FPGA workflow:

Synthesis Tool Device Family
Xilinx Vivado Kintex7

Artix7
Kintex UltraScale+
KintexU
Spartan7
Virtex UltraScale+
Virtex7
VirtexU
Zynq
Zynq UltraScale+

Xilinx ISE Virtex6
Virtex5
Virtex4
Spartan-3A DSP
Spartan 3E

1 About HDL Coder

1-4

https://www.speedgoat.com/help/page/configuration/refentry_host_software_installation#refsect1_xilinx_hdl_software
https://www.speedgoat.com/help/page/configuration/refentry_host_software_installation#refsect1_xilinx_hdl_software

Synthesis Tool Device Family
Spartan3
Spartan6

Altera® Quartus II Cyclone® III
Cyclone IV
Arria® II GX and GZ
Stratix® IV
Stratix V
Cyclone III
Arria 10
Arria V GX
MAX 10

Microsemi Libero SoC SmartFusion2 SoC
RTG4
IGLOO2

IP Core Generation Hardware
The following hardware is supported for the IP Core Generation workflow:

Synthesis Tool Target Platform
Xilinx Vivado Zedboard and with FMC-HDMI-CAM and

FMCOMMS2/3/4/
ZC706 and with FMC-HDMI-CAM and
FMCOMMS2/3/4/
ZC702 with FMC-HDMI-CAM
Zynq ZC706 evaluation kit
Zynq ZC702 evaluation kit
PicoZed FMC-HDMI-CAM

Altera Quartus II Arria 10 SoC development kit

 Supported Third-Party Tools and Hardware

1-5

Synthesis Tool Target Platform
Cyclone V SoC development kit Rev. C and
Rev. D
Arrow DECA Max 10 FPGA development
board
Arrow SoCKit development board
Arria 10 GX FPGA development kit

FPGA Turnkey Hardware
The following hardware is supported for the FPGA Turnkey workflow:

• Altera Arria II GX FPGA development kit
• Altera Cyclone III FPGA development kit
• Altera Cyclone IV GX FPGA development kit
• Altera DE2–115 development and education board
• XUP Atlys Spartan-6 development board
• Xilinx Spartan-3A DSP 1800A development board
• Xilinx Spartan-6 SP605 development board
• Xilinx Virtex-4 ML401 development board
• Xilinx Virtex-4 ML402 development board
• Xilinx Virtex-5 ML506 development board
• Xilinx Virtex-6 ML605 development board

For FPGA development boards that have more than one FPGA device, only one such
device can be used with FPGA Turnkey.

Supported FPGA Device Families for Board Customization

You can also add custom FPGA boards using the FPGA Board Manager. HDL Coder
supports the following FPGA device families for board customization; that is, when you
create your own board definition file. See “FPGA Board Customization” (HDL Verifier).

1 About HDL Coder

1-6

Device Family
Xilinx Kintex7

Spartan-3A DSP
Spartan3
Spartan3A and Spartan3AN
Spartan3E
Spartan6
Virtex4
Virtex5
Virtex6
Virtex7

Altera Cyclone III
Cyclone IV
Arria II
Stratix IV
Stratix V

See Also

More About
• “Tool Setup” on page 2-2

 See Also

1-7

VHDL and Verilog Language Support
The generated HDL code complies with the following standards:

• VHDL-1993 (IEEE® 1076-1993) or later
• Verilog-2001 (IEEE 1364-2001) or later

1 About HDL Coder

1-8

HDL Coder Supported Hardware

As of this release, HDL Coder supports the following hardware.

Support Package Vendor Earliest Release
Available

Last Release
Available

Intel FPGA Boards Intel R2013b Current
Intel SoC Devices Intel R2014b Current
Xilinx FPGA Boards Xilinx R2013b Current
Xilinx Zynq Platform Xilinx R2013a Current

For a complete list of support packages, see Hardware Support.

In addition to these packages, HDL Coder includes built-in support for:

• FPGA-in-the-loop simulation with HDL Verifier
• Simulink Real-Time™ FPGA I/O hardware
• Custom FPGA boards using the FPGA Board Manager

For details, see “Supported Third-Party Tools and Hardware” on page 1-3.

 HDL Coder Supported Hardware

1-9

matlab:matlab.addons.supportpackage.internal.explorer. showSupportPackagesForBaseProducts('HD', 'tripwire');
https://www.mathworks.com/hardware-support.html?fq=product:HD

Getting Started with HDL Coder

2

Tool Setup

In this section...
“Synthesis Tool Path Setup” on page 2-2
“HDL Simulator Setup” on page 2-3
“Xilinx System Generator Setup for ModelSim Simulation” on page 2-4
“Altera DSP Builder Setup” on page 2-5
“FPGA Simulation Library Setup” on page 2-5
“C/C++ Compiler Setup” on page 2-6

Synthesis Tool Path Setup
• “hdlsetuptoolpath Function” on page 2-2
• “Add Synthesis Tool for Current HDL Workflow Advisor Session” on page 2-2
• “Check Your Synthesis Tool Setup” on page 2-3
• “Supported Tool Versions” on page 2-3

hdlsetuptoolpath Function

To use HDL Coder with one of the supported third-party FPGA synthesis tools, add the
tool to your system path using the hdlsetuptoolpath function. Add the tool to your
system path before opening the HDL Workflow Advisor. If you already have the HDL
Workflow Advisor open, see “Add Synthesis Tool for Current HDL Workflow Advisor
Session” on page 2-2.

Add Synthesis Tool for Current HDL Workflow Advisor Session

Simulink to HDL Workflow

1 At the MATLAB command line, use the hdlsetuptoolpath function to add the
synthesis tool.

2 In the HDL Workflow Advisor, in the Set Target > Set Target Device and
Synthesis Tool step, to the right of Synthesis tool, click Refresh.

The synthesis tool is now available.

2 Getting Started with HDL Coder

2-2

MATLAB to HDL Workflow

1 At the MATLAB command line, use the hdlsetuptoolpath function to add the
synthesis tool.

2 In the HDL Workflow Advisor, in the Select Code Generation Target step, to the
right of Synthesis tool, click Refresh list.

The synthesis tool is now available.

Check Your Synthesis Tool Setup

To check your Altera Quartus synthesis tool setup in MATLAB, try launching the tool with
the following command:

!quartus

To check your Xilinx Vivado synthesis tool setup in MATLAB, try launching the tool with
the following command:

!vivado

To check your Xilinx ISE synthesis tool setup in MATLAB, try launching the tool with the
following command:

!ise

To check your Microsemi Libero SoC synthesis tool setup in MATLAB, try launching the
tool with the following command:

!libero

Supported Tool Versions

For supported tool versions, see “Third-Party Synthesis Tools and Version Support” on
page 1-3.

HDL Simulator Setup
To open the HDL simulator from MATLAB, enter these commands:

 Tool Setup

2-3

MATLAB Command to Open HDL Simulator

HDL Simulator Command to Open the Simulator
Cadence Incisive® nclaunch
Mentor Graphics® ModelSim® vsim

For example, to open the Mentor Graphics ModelSim simulator, enter this command:
vsim('vsimdir','C:\Program Files\ModelSim\questasim\10.5c\win64\vsim.exe')

To learn more about how to set up ModelSim, Questa®, or Incisive® for HDL simulation,
or for cosimulation with HDL Verifier, see “HDL Simulator Startup” (HDL Verifier).

Add Simulation Tool for Current HDL Workflow Advisor Session

MATLAB to HDL Workflow

1 Set up your simulation tool.
2 In the HDL Workflow Advisor, in the HDL Verification > Verify with HDL Test

Bench task, click Refresh list.

The simulation tool is now available.

Xilinx System Generator Setup for ModelSim Simulation
To generate ModelSim simulation scripts for a design containing Xilinx System Generator
blocks, you must:

• Have compiled Xilinx simulation libraries.
• Specify the path to your compiled libraries.

Required Libraries for Vivado and ISE

To generate ModelSim simulation scripts, you must have the following compiled Xilinx
simulation libraries for your EDA simulator and target language:

• unisim
• simprim
• xilinxcorelib

To learn how to compile these libraries, refer to the Xilinx documentation.

2 Getting Started with HDL Coder

2-4

• For Vivado, see compile_simlib.
• For ISE, see compxlib.

Specify Path to Required Libraries

Specify the path to your compiled Xilinx simulation libraries by setting the
XilinxSimulatorLibPath parameter for your model.

For example, you can use hdlset_param to set XilinxSimulatorLibPath:

libpath = '/apps/Xilinx_ISE/XilinxISE-13.4/Linux/ISE_DS/ISE/vhdl/
 mti_se/6.6a/lin64/xilinxcorelib';
hdlset_param (bdroot, 'XilinxSimulatorLibPath', libpath);

Altera DSP Builder Setup
To generate code for a design containing both Altera DSP Builder and Simulink blocks,
you must open MATLAB with Altera DSP Builder. For details, refer to the Altera DSP
Builder documentation.

FPGA Simulation Library Setup
To map your design to an Altera or a Xilinx FPGA simulator library:

• Use Xilinx LogiCORE® IP Floating-Point Operator v5.0 or Altera floating-point
megafunction IP cores.

• Specify the compiled simulation library and the target language for your EDA
simulator. Use XilinxCoreLib simulation library for Xilinx LogiCORE IP and the EDA
simulation library compiler for Altera megafunction IP.

To learn how to compile this library, refer to the Xilinx compxlib documentation .
• Specify the path to your compiled Altera or Xilinx simulation libraries. Altera provides

the simulation model files in \quartus\eda\sim_lib folder. Set the
SimulationLibPath parameter for your DUT.

For example, you can use hdlset_param to set SimulationLibPath:

myDUT = gcb;
libpath = '/apps/Xilinx_ISE/XilinxISE-13.4/Linux/ISE_DS/ISE/vhdl/
 mti_se/6.6a/lin64/xilinxcorelib';
hdlset_param (myDUT, 'SimulationLibPath', libpath);

 Tool Setup

2-5

You can also specify the simulation library path from the HDL Code Generation >
Test Bench pane in the Configuration Parameters dialog box.

C/C++ Compiler Setup
HDL Coder locates and uses a supported installed compiler. For most platforms, a default
compiler is supplied with MATLAB. For a list of supported compilers, see at https://
www.mathworks.com/support/compilers/current_release/.

See Also

More About
• “Third-Party Synthesis Tools and Version Support” on page 1-3

2 Getting Started with HDL Coder

2-6

https://www.mathworks.com/support/compilers/current_release/
https://www.mathworks.com/support/compilers/current_release/

Tutorials

• “HDL Code Generation and FPGA Synthesis from a MATLAB Algorithm” on page 3-2
• “Create HDL-Compatible Simulink Model” on page 3-11
• “Generate HDL Code from Simulink Model” on page 3-20
• “HDL Code Generation and FPGA Synthesis Using the HDL Workflow Advisor”

on page 3-26
• “Verify Generated Code from Simulink Model Using HDL Test Bench” on page 3-33

3

HDL Code Generation and FPGA Synthesis from a
MATLAB Algorithm

In this section...
“About the Algorithm in This Example” on page 3-2
“Create Local Copy of Design and Testbench Files” on page 3-2
“Set Up Synthesis Tool Path” on page 3-3
“Test the Original MATLAB Algorithm” on page 3-3
“Set Up a Project Using HDL Coder App” on page 3-4
“Open the HDL Coder Workflow Advisor” on page 3-6
“Create Fixed-Point Versions of the Algorithm and Test Bench” on page 3-7
“Generate HDL Code” on page 3-9
“Verify Generated HDL Code” on page 3-9
“FPGA Synthesis and Implementation” on page 3-9

This example illustrates how you can use HDL Coder to generate and synthesize HDL
code for a MATLAB algorithm that implements a simple filter.

About the Algorithm in This Example
This tutorial uses these files:

• mlhdlc_sfir.m — Simple filter function from which you generate HDL code. To see
the MATLAB code for the FIR filter algorithm, at the command-line, enter:

edit('mlhdlc_sfir')
• mlhdlc_sfir_tb.m — Test bench that the HDL Coder project uses to simulate the
filter using a representative input range. To see the MATLAB code for the FIR filter
test bench, at the command-line, enter:

edit('mlhdlc_sfir_tb')

Create Local Copy of Design and Testbench Files
Before you begin generating code, In the MATLAB path, navigate to a folder that is
writable, and then create a working folder to store the design and test bench files.

3 Tutorials

3-2

1 In your current working folder, create a folder called filter_sfir.

mkdir filter_sfir;

2 Copy the tutorial files, mlhdlc_sfir.m and mlhdlc_sfir_tb.m, to this folder.

mlhdlc_demo_dir = fullfile(matlabroot, 'toolbox', 'hdlcoder',...
'hdlcoderdemos', 'matlabhdlcoderdemos');
copyfile(fullfile(mlhdlc_demo_dir, 'mlhdlc_sfir.m'), 'filter_sfir');
copyfile(fullfile(mlhdlc_demo_dir, 'mlhdlc_sfir_tb.m'), 'filter_sfir');

Set Up Synthesis Tool Path
If you want to synthesize the generated HDL code, before you use HDL Coder to generate
code, set up your synthesis tool path. To set up the path to your synthesis tool, use the
hdlsetuptoolpath function. For example, if your synthesis tool is Xilinx Vivado

hdlsetuptoolpath('ToolName','Xilinx Vivado','ToolPath',...
 'C:\Xilinx\Vivado\2017.2\bin\vivado.bat');

To check your Xilinx Vivado synthesis tool setup, launch the tool with the following
command:

!vivado

If you are using another Synthesis tool, to see how to set up the tool path and the right
tool version to use, see “Synthesis Tool Path Setup” on page 2-2.

Test the Original MATLAB Algorithm
To verify the functionality of your MATLAB algorithm, before generating HDL code,
simulate your MATLAB design.

1 Make the filter_sfir folder your working folder, for example:

cd filter_sfir

2 Run the test bench. At the MATLAB command line, enter:

mlhdlc_sfir_tb

The test bench runs and plots the input signal and the filtered output.

 HDL Code Generation and FPGA Synthesis from a MATLAB Algorithm

3-3

Set Up a Project Using HDL Coder App
1 Open the HDL Coder App.

• To open the App from the UI, in MATLAB, on the Apps tab, in the Code
Generation section, select HDL Coder. You can add this App to your favorites.

• To open the App from the command line, enter:

hdlcoder

3 Tutorials

3-4

2 Specify the project name, for example, enter mydesign.

HDL Coder creates the project, mydesign.prj, in the local working folder, and
opens the project in the right side of the MATLAB workspace.

3 Add the design and test bench files. For MATLAB Function, add the
mlhdlc_sfir.m file, and for MATLAB Test Bench, add the mlhdlc_sfir_tb.m
file.

 HDL Code Generation and FPGA Synthesis from a MATLAB Algorithm

3-5

4 To have the App automatically define the data types of the signals, when you add the
MATLAB Function, select Autodefine types. Select the MATLAB Test Bench file
mlhdlc_sfir_tb.m, and then run the test bench.

HDL Coder simulates the algorithm and test bench, and automatically defines input
types. Select Use these types.

Open the HDL Coder Workflow Advisor
Use the HDL Coder Workflow Advisor to convert your algorithm to fixed-point, generate
synthesizable HDL code, and then deploy the code to a target platform. To learn more
about each individual task in the HDL Workflow Advisor, right-click that task, and select
What's This?.

To open the Workflow Advisor, in the project, at the bottom of the pane, select the
Workflow Advisor button. You see that the Define Input Types task has passed.

3 Tutorials

3-6

Create Fixed-Point Versions of the Algorithm and Test Bench
When you run fixed-point conversion, to propose fraction lengths for floating-point data
types, HDL Coder uses the Default word length. In this tutorial, the Default word
length is 14. The advisor provides a default Safety Margin for Simulation Min/Max of
0%. The advisor adjusts the range of the data by this safety factor. For example, a value of
4 specifies that you want a range of at least 4 percent larger.

 HDL Code Generation and FPGA Synthesis from a MATLAB Algorithm

3-7

Select the Fixed-Point Conversion task. The Fixed-Point Conversion tool opens in the
right pane.

1 At the top left, select Analyze.

After the simulation, HDL Coder displays the input signal, filtered output signal, and
the frequency domain plot of input and output signals. If you navigate to Fixed-Point
Conversion tool in the Workflow Advisor Window, you see that each input, output,
and persistent variable has a Sim Min, Sim Max, and Proposed Type in the table.

This example uses the simulation ranges to infer fixed-point types. You can use
Compute Derived Ranges to obtain the range using static range analysis. To learn
more, see “Automated Fixed-Point Conversion”.

2 At the top, in the Verification section, click Validate Types.

HDL Coder validates the build with the proposed fixed-point types and generates a
fixed-point design.

3 At the top, in the Verification section, click the down-arrow for Test Numerics and
select Log inputs and outputs for comparison plots. Click the top part of the Test
Numerics button.

HDL Coder simulates the fixed-point design with the original test bench, compares
the output to the original floating-point design output, and then displays the
difference as an error signal.

3 Tutorials

3-8

4 In the bottom, you see a Verification Output tab. The tab displays a link to the
report mlhdlc_sfir_fixed_report.html. To explore the fixed-point code for the
mlhdlc_sfir function, open the report.

To see the fixed-point code in the MATLAB Editor, in the filter_sfir folder, you
see a codegen folder. When you navigate this folder, you see a mlhdlc_sfir_fixpt
file. Open this file.

Generate HDL Code
1 If you want to synthesize your design on a target FPGA platform, select the Select

Code Generation Target task. Leave Workflow to Generic ASIC/FPGA and
specify the Synthesis tool. If you don't see the synthesis tool, select Refresh list.

2 Before generating code, to customize code generation options, in the HDL Code
Generation task, use the Target, Coding Style, Clocks and Ports, Optimizations,
Advanced, and Script Options tabs

3 To generate HDL code, in the HDL Code Generation task, select Run.

The message window has a links to the generated HDL code and the resource report.
Click the links to view the code and resource report.

Verify Generated HDL Code
1 In the HDL Workflow Advisor left pane, select HDL Verification > Verify with HDL

Test Bench task.
2 Enable Generate HDL test bench and disable Skip this step. Enable Simulate

generated HDL test bench and select a simulation tool. Click Run.

The task generates an HDL test bench, then simulates the fixed-point design using
the selected simulation tool, and generates a compilation report and a simulation
report.

FPGA Synthesis and Implementation
1 Select Synthesis and Analysis and disable Skip this step. Run the Create Project

task.

This task creates a synthesis project for the HDL code. HDL Coder uses this project
in the next task to synthesize the design.

 HDL Code Generation and FPGA Synthesis from a MATLAB Algorithm

3-9

2 Select and run Run Synthesis task. This task:

• Launches the synthesis tool in the background.
• Opens the synthesis project created in the previous task, compiles HDL code,

synthesizes the design, and emits netlists and related files.
• Generates a synthesis report.

3 Select and run Run Implementation task. This task:

• Launches the synthesis tool in the background.
• Runs a Place and Route process that takes the circuit description produced by the

previous mapping process, and emits a circuit description suitable for
programming an FPGA.

• Emits pre- and post-routing timing information for use in critical path analysis and
back annotation of your source model.

See Also

Related Examples
• “Basic HDL Code Generation with the Workflow Advisor”
• “Getting Started with MATLAB to HDL Workflow”
• “Generate HDL Code from MATLAB Code Using the Command Line Interface”

3 Tutorials

3-10

Create HDL-Compatible Simulink Model
In this section...
“Open Model and HDL Coder Library” on page 3-11
“Develop Design and Test Bench” on page 3-12
“Configure Model for HDL Compatibility” on page 3-15
“Check Subsystem for HDL Compatibility” on page 3-16
“Run Model Advisor Checks for HDL Coder” on page 3-18
“Generate HDL Code” on page 3-19

This example illustrates how you can model a simple up counter and configure the
counter for compatibility with HDL code generation. The counter wraps back to zero after
it reaches the upper limit that you specify.

Open Model and HDL Coder Library
1 Open a blank model in the Simulink Editor. To open a new model, at the command

line, enter:

simulink

For this example, select the Blank Model template.

Note On the Simulink Start Page, in the HDL Coder section, you see templates that
are preconfigured for HDL code generation. These models have their Configuration
Parameters and solver settings set up for HDL code generation. To learn more, see
“Use Simulink Templates for HDL Code Generation”.

Save the model with a filename such as counter.slx in a working folder that is
writable.

2 Open the Simulink Library Browser and then open the HDL Coder Block Library.

To filter the Library Browser to show the block libraries that support HDL code
generation, use the hdllib function:

hdllib

 Create HDL-Compatible Simulink Model

3-11

In the HDL Coder library, you see several blocks that are pre-configured for HDL
code generation. Blocks in this library are available with Simulink. If you do not have
HDL Coder, you can simulate the blocks in your model, but cannot generate HDL
code.

You can find additional blocks in these block libraries:

• DSP System Toolbox HDL Support
• Communications Toolbox HDL Support
• Vision HDL Toolbox
• LTE HDL Toolbox

To restore the Library Browser to the default view, enter:

hdllib('off')

Note The set of supported blocks tend to change each release. Rebuild your
supported blocks library each time you install a new version of this product.

To learn more, see hdllib.

Develop Design and Test Bench
1 Drag the blocks from the HDL Coder library to the model window and connect them

to develop your algorithm. This figure shows an example of how to model a counter.

3 Tutorials

3-12

The model has two input ports, count_threshold and Enable, and one output port,
count_output. When the Enable signal is logic high, the counter counts up from
zero to the count_threshold value and then wraps back to zero. When the Enable
signal becomes logic low, the counter holds the previous value.

To learn more about how to create a model, see “Create a Simple Model” (Simulink).
2 Wrap your counter algorithm in a Subsystem. This Subsystem that you want to

generate HDL code for is the Design-Under-Test (DUT). Blocks outside the DUT
become part of the test bench and are used for simulation. This figure shows the
DUT, Counter, and the blocks that form the test bench surrounding it.

 Create HDL-Compatible Simulink Model

3-13

You can use any blocks inside the test bench, which includes blocks that are not
supported for HDL code generation.

3 Verify the functionality of the design. Simulate the testbench and then open the
Scope block.

3 Tutorials

3-14

Configure Model for HDL Compatibility
To configure your model for compatibility with HDL code generation, use the hdlsetup
function. To configure your current model, enter this command:

hdlsetup(gcs)

The hdlsetup function specifies ASIC/FPGA as the hardware device vendor, sets the
solver options, including model start and stop times, and a fixed step solver. To see the
settings changed by this function, enter this command:

edit hdlsetup

Note After you run the hdlsetup function, it is recommended that you simulate your
model.

 Create HDL-Compatible Simulink Model

3-15

Check Subsystem for HDL Compatibility
The compatibility checker generates a report specified system for compatibility problems,
such as use of unsupported blocks, illegal data type usage, and so on.

From Simulink Editor

From the Simulink Editor, right-click the DUT, and select HDL Code > Check
Subsystem for HDL compatibility.

From Configuration Parameters Dialog Box

To customize model-level settings for your design and check compatibility of your design
from the UI, use the HDL Code Generation pane in the Configuration Parameters dialog
box or the Model Explorer.

To open the Configuration Parameters dialog box, in the Simulink Editor, on the
Simulation tab, select Model Configuration Parameters.

3 Tutorials

3-16

To check HDL compatibility, in the HDL Code Generation pane:

1 For Generate HDL for, select the DUT Subsystem, Counter.
2 Click Run Compatibility Checker.

From Command Line

At the command line, use the checkhdl function. Select the DUT Subsystem and then
enter this command:

checkhdl(gcb)

See also “Check Your Model for HDL Compatibility”.

 Create HDL-Compatible Simulink Model

3-17

When you run this command, the HDL compatibility checker generates an HDL Code
Generation Check Report. The report is stored in the target hdlsrc folder. If the report
does not display any errors, your model is compatible for HDL code generation.

Starting HDL Check.
HDL Check Complete with 0 errors, warnings and messages.

Run Model Advisor Checks for HDL Coder
You can also run checks in the HDL Model Checker to verify whether your design is
compatible for HDL code generation. To open the HDL Model Checker, run the
hdlmodelchecker function:

hdlmodelchecker(gcb)

Run the checks in the HDL Model Checker and fix any warnings that are reported. To
learn more, see “Getting Started with the HDL Model Checker”.

3 Tutorials

3-18

Generate HDL Code
Your model is now compatible for HDL code generation. To learn how to generate HDL
code for your model, see “Generate HDL Code from Simulink Model” on page 3-20.

See Also
checkhdl | hdllib | hdlmodelchecker | hdlsetup

More About
• “Use Simulink Templates for HDL Code Generation”
• “Verify Generated Code from Simulink Model Using HDL Test Bench” on page 3-33
• “HDL Code Generation and FPGA Synthesis Using the HDL Workflow Advisor” on

page 3-26

 See Also

3-19

Generate HDL Code from Simulink Model
In this section...
“The sfir_fixed Model” on page 3-20
“Generate HDL Code” on page 3-22
“View HDL Code Generation Files” on page 3-24

For this tutorial, you can use the Counter model that you created in “Create HDL-
Compatible Simulink Model” on page 3-11 as a source for HDL code generation. The
model simulates an up counter that counts from zero to a threshold value and then wraps
back to zero.

If you want to choose a different model, you can use the sfir_fixed model. To open this
model, enter this command:

sfir_fixed

To save a local copy of the sfir_fixed model to your working folder, n Simulink, select
File > Save As.

The sfir_fixed Model
This figure shows the sfir_fixed model.

3 Tutorials

3-20

The top-level model generates 16-bit fixed-point input signals for the symmetric_fir
subsystem. The signal From Workspace block generates a test input or stimulus signal for
the filter. The four Constant blocks provide filter coefficients. The Scope blocks are used
in simulation, and do not generate HDL code.

The following figure shows the symmetric_fir Subsystem.

 Generate HDL Code from Simulink Model

3-21

The fixed-point data types propagate through the subsystem. Inputs inherit the data types
of the signals presented to them. Where required, internal rules of the blocks determine
the output data type, given the input data types and the operation performed. The filter
outputs a fixed-point result at the y_out port, and also replicates its input after passing it
through several delay stages at the delayed_x_out port.

Generate HDL Code
You can generate HDL code for the DUT from the Simulink Editor, Configuration
Parameters dialog box, or the command line. If you want to generate HDL code and

3 Tutorials

3-22

synthesize your design on a target FPGA platform, use the HDL Workflow Advisor. To
learn more, see “HDL Code Generation and FPGA Synthesis Using the HDL Workflow
Advisor” on page 3-26.

For the counter model, the counter Subsystem is the DUT. For the sfir_fixed model,
the the symmetric_fir Subsystem is the DUT.

From Simulink Editor

To generate code for your DUT with the default settings, use the context menu available
in the Simulink Editor. To generate code, right-click the DUT, and select HDL Code >
Generate HDL for Subsystem.

By default, HDL Coder generates VHDL code in the target hdlsrc folder.

From Configuration Parameters Dialog Box

To customize model-level settings for your design and generate HDL code from the UI,
use the HDL Code Generation pane in the Configuration Parameters dialog box or the
Model Explorer. Before generating code, you can select the target HDL language and
directory, specify enable native floating-point support, generate resource and traceability
reports, use model-level optimizations, and modify other global settings.

To open the Configuration Parameters dialog box, in the Simulink Editor, on the
Simulation tab, select Model Configuration Parameters. To generate code, in the
HDL Code Generation pane:

1 For Generate HDL for, specify the DUT.
2 For Language and Folder, specify the target language of the generated HDL code

and the target folder that stores generated code files and scripts.
3 Click Generate.

From Command Line

To generate HDL code from the command line, use the makehdl function. In your
Simulink model, select the DUT that you want to generate code for, and enter this
command:

makehdl(gcb)

 Generate HDL Code from Simulink Model

3-23

To customize model-level settings when you generate code for your DUT, specify one or
more name-value pair arguments. By default, HDL Coder generates VHDL code. To
generate Verilog code, enter this command:

makehdl(gcb,'TargetLanguage','Verilog')

The name-value pairs or properties that you can specify can be mapped to the
corresponding parameter in the Configuration Parameters dialog box. In the dialog box,
when you right-click a parameter and select What's this?, you see a command-line field
that indicates the property you can specify with makehdl. This table shows the
relationship between some of the parameters in the HDL Code Generation pane and the
corresponding makehdl property.

Configuration Parameter makehdl Property
Generate HDL for HDLSubsystem
Language TargetLanguage
Folder TargetDirectory

To learn more about the name-value pairs that you can specify, see makehdl. The name-
value pairs that you specify are not saved on the model and therefore do not persist
across function calls. To save the global settings that you customize on the model, use
hdlset_param. For example, to save Verilog as the target language on the model and
then generate code, enter these commands:

hdlset_param(gcs,'TargetLanguage','Verilog')
makehdl(gcb)

View HDL Code Generation Files
1 HDL Coder compiles the model before generating code. Depending on model display

options such as port data types, the model can change in appearance after code
generation.

As code generation proceeds, HDL Coder displays progress messages. The process
should complete with the message

HDL Code Generation Complete.

When generating code, HDL Coder generates a message with:

3 Tutorials

3-24

• Link to the Config Set that indicates the model for which the Configuration
Parameters are applied.

• Links to the generated files. To view the files in the MATLAB Editor, click the
links.

2 A folder icon for the hdlsrc folder is now visible in the Current Folder browser. To
view generated code and script files, double-click the hdlsrc folder icon. In the
folder, you see a file containing the VHDL or Verilog code, a script to compile the
generated code, a synthesis script, and a mapping file. For example, if you generated
code for the symmetric_fir Subsystem, you see these files in the hdlsrc folder:

• symmetric_fir.vhd: VHDL code. This file contains an entity definition and RTL
architecture implementing the symmetric_fir filter.

Note If you generated Verilog code, you get a symmetric_fir.v file.
• symmetric_fir_compile.do: Mentor Graphics ModelSim compilation script

(vcom command) to compile the generated VHDL code.
• symmetric_fir_synplify.tcl: Synplify® synthesis script.
• symmetric_fir_map.txt: Mapping file. This report file maps generated entities

or modules to the subsystems that generated them. See “Trace Code Using the
Mapping File”.

3 To view the generated VHDL code in the MATLAB Editor, double-click the
symmetric_fir.vhd file icon in the Current Folder browser.

Before you proceed to verify the generated code or deploy your design on the target
hardware, from the hdlsrc folder, navigate to the current working folder. To learn how
you can verify the generated HDL code, see “Verify Generated Code from Simulink Model
Using HDL Test Bench” on page 3-33.

See Also
hdlset_param | hdlsetup | makehdl

More About
• “Create HDL-Compatible Simulink Model” on page 3-11
• “HDL Code Generation and FPGA Synthesis Using the HDL Workflow Advisor” on

page 3-26

 See Also

3-25

HDL Code Generation and FPGA Synthesis Using the
HDL Workflow Advisor

In this section...
“About HDL Workflow Advisor” on page 3-26
“Set Up Tool Path” on page 3-27
“Open the HDL Workflow Advisor” on page 3-27
“Generate HDL Code” on page 3-28
“Perform FPGA Synthesis and Analysis” on page 3-30
“Run Workflow at Command Line with a Script” on page 3-31

This example shows how you can use the HDL Workflow Advisor to generate HDL code
and synthesize your design on a target XilinxFPGA.

For this tutorial, you can use the Counter model that you created in “Create HDL-
Compatible Simulink Model” on page 3-11 as a source for HDL code generation. The
model simulates an up counter that counts from zero to a threshold value and then wraps
back to zero. If you want to choose a different model, you can use the sfir_fixed
model. To open this model, enter this command:

sfir_fixed

To learn more about the sfir_fixed model, see “Generate HDL Code from Simulink
Model” on page 3-20.

About HDL Workflow Advisor
The HDL Workflow Advisor guides you through the stages of generating HDL code for a
Simulink subsystem and the FPGA design process, such as:

• Checking the model for HDL code generation compatibility and automatically fixing
incompatible settings.

• Generation of HDL code, a test bench, and scripts to build and run the code and test
bench.

• Generation of cosimulation or SystemVerilog DPI test benches and code coverage
(requires HDL Verifier).

3 Tutorials

3-26

• Synthesis and timing analysis through integration with third-party synthesis tools.
• Back-annotation of the model with critical path information and other information

obtained during synthesis.
• Complete automated workflows for selected FPGA development target devices and the

Simulink Real-Time FPGA I/O workflow, including FPGA-in-the-loop simulation.

Set Up Tool Path
If you do not want to synthesize your design, but want to generate HDL code, you do not
have to set the tool path. In the HDL Workflow Advisor, on the Set Target > Set Target
Device and Synthesis Tool step, leave the Synthesis tool setting to the default No
Synthesis Tool Specified, and then run the workflow.

If you want to synthesize your design on a target platform, before you open the HDL
Workflow Advisor and run the workflow, set up the path to your Synthesis tool. This
example uses Xilinx Vivado, so you must have already installed Xilinx Vivado. To set the
tool path, use the hdlsetuptoolpath function to point to an installed Xilinx Vivado
2017.2 executable.

hdlsetuptoolpath('ToolName','Xilinx Vivado','ToolPath',...
 'C:\Xilinx\Vivado\2017.2\bin\vivado.bat');

To follow this example, you can use a different synthesis tool of your choice and use
hdlsetuptoolpath to set the tool path.

Open the HDL Workflow Advisor
To start the HDL Workflow Advisor from a Simulink model:

• From the Simulink Editor, right-click the DUT subsystem and select HDL Code >
HDL Workflow Advisor.

• From the command line, select the DUT subsystem, and use the hdladvisor
function:

hdladvisor(gcb)

When you open the HDL Workflow Advisor, the code generator can warn that the project
folder is incompatible. To open the Advisor, select Remove slprj and continue.

In the HDL Workflow Advisor, the left pane lists the folders in the hierarchy. Each folder
represents a group or category of related tasks. Expanding the folders shows available

 HDL Code Generation and FPGA Synthesis Using the HDL Workflow Advisor

3-27

tasks in each folder. From the left pane, you can select a folder or an individual task. The
HDL Workflow Advisor displays information about the selected folder or task in the right
pane. The contents of the right pane depends on the selected folder or task. For some
tasks, the right pane contains simple controls for running the task and a display area for
status messages and other task results. For other tasks that involve setting code or test
bench generation parameters, the right pane displays several parameter and option
settings.

To learn more about each individual task, right-click that task, and select What's This?.

To learn more about the HDL Workflow Advisor window, see “Getting Started with the
HDL Workflow Advisor”.

You can use the HDL Workflow Advisor to generate HDL code from a MATLAB script. To
learn more, see “Basic HDL Code Generation with the Workflow Advisor”.

Generate HDL Code
1 In the Set Target > Set Target Device and Synthesis Tool step, for Synthesis

tool, select Xilinx Vivado and select Run This Task.

3 Tutorials

3-28

2 Leave all settings to default and right-click the Check Sample Times task and select
Run to Selected Task. By running the tasks in the Prepare Model For HDL Code
Generation folder, the HDL Workflow Advisor checks the model for code generation
compatibility.

Note If running a task generates a warning, select Modify All, and rerun the task.
3 To modify code generation options, use the tasks in Set Code Generation Options.

For example, to customize the target HDL language and the target code generation
folder, use the Set Basic Options task. After you make changes, click Apply.

4 To generate code, right-click the Generate RTL Code and Testbench task, and
select Run to Selected Task.

 HDL Code Generation and FPGA Synthesis Using the HDL Workflow Advisor

3-29

Perform FPGA Synthesis and Analysis
1 In the FPGA Synthesis and Analysis > Perform Synthesis and P/R > Perform

Place and Route task, unselect Skip this task and click Apply.
2 Right-click Annotate Model with Synthesis Result and select Run to Selected

Task.
3 View the annotated critical path in the model.

3 Tutorials

3-30

Run Workflow at Command Line with a Script
To run the HDL workflow at a command line, you can export the Workflow Advisor
settings to a script. To export to script, in the HDL Workflow Advisor window, select File
> Export to Script. In the Export Workflow Configuration dialog box, enter a file name
and save the script.

The script is a MATLAB file that you can run from the command line. You can modify the
script directly or, import the script into the HDL Workflow Advisor, modify the tasks, and
export the updated script. To learn more, see “Run HDL Workflow with a Script”.

 HDL Code Generation and FPGA Synthesis Using the HDL Workflow Advisor

3-31

See Also
hdladvisor | hdlsetuptoolpath | makehdl

More About
• “Tool Setup” on page 2-2
• “Create HDL-Compatible Simulink Model” on page 3-11
• “Generate HDL Code from Simulink Model” on page 3-20

3 Tutorials

3-32

Verify Generated Code from Simulink Model Using HDL
Test Bench

In this section...
“How to Verify the Generated Code” on page 3-33
“What is a HDL Test Bench?” on page 3-33
“Generate HDL Test Bench” on page 3-34
“View HDL Test Bench Files” on page 3-35
“Run Simulation and Verify Generated HDL Code” on page 3-36

This example shows how to generate a HDL test bench and verify the generated code for
your design. The example assumes that you have already generated HDL code for your
model. To learn how to generate HDL code, see “Generate HDL Code from Simulink
Model” on page 3-20.

If you used the counter model to generate code, the entity to be tested using the HDL
test bench is the counter.v or counter.vhd file. If you used the sfir_fixed model,
the entity to be tested is the symmetric_fir.vhd or the symmetric_fir.v file.

How to Verify the Generated Code
This example illustrates how to generate a HDL test bench to simulate and verify the
generated HDL code for your design. You can also verify the generated HDL code from
your model using these methods:

Verification Method For More Information
Validation Model “Generated Model and Validation Model”
HDL Cosimulation (requires HDL Verifier) “Cosimulation”
FPGA-in-the-Loop “FPGA-in-the-Loop”
SystemVerilog DPI Test Bench “SystemVerilog DPI Test Bench”

What is a HDL Test Bench?
To verify the functionality of the HDL code that you generated for the DUT, generate a
HDL test bench. A test bench includes:

 Verify Generated Code from Simulink Model Using HDL Test Bench

3-33

• Stimulus data generated by signal sources connected to the entity under test.
• Output data generated by the entity under test. During a test bench run, this data is

compared to the outputs of the VHDL model, for verification purposes.
• Clock, reset, and clock enable inputs to drive the entity under test.
• A component instantiation of the entity under test.
• Code to drive the entity under test and compare its outputs to the expected data.

You can simulate the generated test bench and script files with the Mentor Graphics
ModelSim simulator.

Generate HDL Test Bench
Depending on whether you generated VHDL or Verilog code, make sure that you can
generate VHDL or Verilog test bench code. The test bench code drives the HDL code that
you generated for the DUT. By default, the HDL code and the test bench code are written
to the same target folder hdlsrc relative to the current folder.

From Configuration Parameters Dialog Box

To customize test bench settings and select the test bench that you want to use to verify
the generated code, use the HDL Code Generation > Test Bench pane in the
Configuration Parameters dialog box or the Model Explorer.

To open the Configuration Parameters dialog box, in the Simulink Editor, on the
Simulation tab, select Model Configuration Parameters. To generate test bench code,
in the HDL Code Generation > Test Bench pane, select HDL test bench and click
Generate Test Bench.

From Command Line

To generate HDL test bench from the command line, use the makehdltb function. In your
Simulink model, select the DUT that you want to generate the test bench for, and enter
this command:

makehdltb(gcb)

To customize model-level settings when you generate the test bench, specify one or more
name-value pair arguments. By default, HDL Coder generates VHDL code. To generate
Verilog code, enter this command:

makehdltb('sfir_fixed/symmetric_fir','TargetLanguage','verilog')

3 Tutorials

3-34

With makehdltb, you can specify the same name-value pairs that you use with makehdl.
To learn more about the name-value pairs that you can specify, see makehdltb.

These name-value pairs or properties that you can specify can be mapped to the
corresponding parameter in the Configuration Parameters dialog box. In the dialog box,
when you right-click a parameter and select What's this?, you see a command-line field
that indicates the property you can specify with makehdltb. This table shows the
relationship between some of the parameters in the HDL Code Generation pane and the
corresponding makehdltb property.

Configuration Parameter makehdltb Property
Generate HDL for HDLSubsystem
Language TargetLanguage
Folder TargetDirectory

View HDL Test Bench Files
1 If you haven't already generated code for your model, HDL Coder compiles the model

and generates HDL code before generating the test bench. Depending on model
display options such as port data types, the model can change in appearance after
code generation.

As test bench generation proceeds, HDL Coder displays progress messages. The
process should complete with the message

HDL TestBench Generation Complete.
2 After generating the test bench, you see the generated files in the hdlsrc folder. For

example, if you generated a test bench for the sfir_fixed/symmetric_fir
Subsystem, the folder contains:

• symmetric_fir_tb.vhd: VHDL test bench code, with generated test and output
data.

Note If you generated Verilog test bench code, the generated file is
symmetric_fir_tb.v.

• symmetric_fir_tb_compile.do: Mentor Graphics ModelSim compilation
script (vcom commands). This script compiles and loads the entity to be tested
(symmetric_fir.vhd) and the test bench code (symmetric_fir_tb.vhd).

 Verify Generated Code from Simulink Model Using HDL Test Bench

3-35

• symmetric_fir_tb_sim.do: Mentor Graphics ModelSim script to initialize the
simulator, set up wave window signal displays, and run a simulation.

3 To view the generated test bench code in the MATLAB Editor, double-click the
symmetric_fir_tb.vhd or symmetric_fir_tb.v file in the Current Folder.

Run Simulation and Verify Generated HDL Code
To verify the simulation results, you can use the Mentor Graphics ModelSim simulator.
Make sure that you have already installed Mentor Graphics ModelSim.

To launch the simulator, use the vsim function. This command shows how to open the
simulator by specifying the path to the executable:
vsim('vsimdir','C:\Program Files\ModelSim\questasim\10.5c\win64\vsim.exe')

To compile and run a simulation of the generated model and test bench code, use the
scripts that are generated by HDL Coder. Following example illustrates the commands
that compile and simulate the generated test bench for the sfir_fixed/
symmetric_fir Subsystem. You can similarly compile and simulate the test bench
generated for the counter/counter Subsystem.

1 Open the Mentor Graphics ModelSim software and navigate to the folder that has the
generated code files and the scripts.

2 Use the generated compilation script to compile and load the generated model and
text bench code. For example, if you generated a test bench for the sfir_fixed/
symmetric_fir Subsystem, run this command to compile the generated code.

ModelSim> do symmetric_fir_tb_compile.do
Model Technology ModelSim SE vlog 6.0 Compiler 2004.08 Aug 19 2004
-- Compiling module symmetric_fir

Top level modules:
symmetric_fir
Model Technology ModelSim SE vlog 6.0 Compiler 2004.08 Aug 19 2004
-- Compiling module symmetric_fir_tb

Top level modules:
symmetric_fir_tb

3 Use the generated simulation script to execute the simulation. The following listing
shows the command and responses. You can ignore any warning messages. The test
bench termination message indicates that the simulation has run to completion
without comparison errors. For example, if you generated a test bench for the

3 Tutorials

3-36

sfir_fixed/symmetric_fir Subsystem, run this command to simulate the
generated code.

ModelSim>do symmetric_fir_tb_sim.do
vsim work.symmetric_fir_tb
Loading work.symmetric_fir_tb
Loading work.symmetric_fir
**** Test Complete. ****
Break at
C:/work/sl_hdlcoder_work/vlog_code/symmetric_fir_tb.v line 142
Simulation Breakpoint:Break at
C:/work/sl_hdlcoder_work/vlog_code/symmetric_fir_tb.v line 142
MACRO ./symmetric_fir_tb_sim.do PAUSED at line 14

4 To see the simulation results, in the Mentor Graphics ModelSim simulator, open the
wave window. The simulation script displays inputs and outputs in the model
including the reference signals y_out_ref and delayed_x_out_ref in the wave
window.

5 You can now view the signals and verify that the simulation results match the
functionality of your original design. After verifying, close the Mentor Graphics
ModelSim simulator, and then close the files that you have opened in the MATLAB
Editor.

See Also
makehdl | makehdltb

 See Also

3-37

More About
• “Test Bench Generation Output”
• “HDL Test Bench”
• “HDL Code Generation and FPGA Synthesis Using the HDL Workflow Advisor” on

page 3-26

3 Tutorials

3-38

